
Information Coding / Computer Graphics, ISY, LiTH

Blender, nodes and OSL

11(64)

11(64)

Information Coding / Computer Graphics, ISY, LiTH

Lab 2, Open Shading Language!
!

Lab 2 is about the Open Shading Language, which can be
used from systems like Blender and 3D Studio Max.!

!
I will here focus on Blender.

12(64)12(64)

Information Coding / Computer Graphics, ISY, LiTH

Blender nodes and rendering!
!

Blender has a node system and multiple rendering
engines.!

!
You will usually use path tracing for high quality rendering.

13(64)13(64)

Information Coding / Computer Graphics, ISY, LiTH

Network of shader nodes, with a node editor!
!

OSL shaders are part of a more or less complex network of
nodes, out of some may be fixed, chosen from a set of pre-

made nodes, while other may be OSL shader nodes

14(64)14(64)

Information Coding / Computer Graphics, ISY, LiTH

Based on "closures"!
!

"OSL's surface and volume shaders compute an explicit symbolic
description, called a "closure", of the way a surface or volume

scatters light, in units of radiance.!
!

These radiance closures may be evaluated in particular directions,
sampled to find important directions, or saved for later evaluation

and re-evaluation"!
!

In short: "closures" is about structures being passed between nodes,
passing multiple variables for later rendering.!

!
Don't worry to much on this. It is not vital for our work.

15(64)15(64)

Information Coding / Computer Graphics, ISY, LiTH

From Wikipedia

BSDF!
!

OSL uses the BSDF model, Bidirectional scattering
distribution function. This handles both reflections and
transparency. Describes light exchange to any desired

detail.!
!

Combines BRDF and BTDF.!
!

BRDF = reflectance!
!

BTDF = transparency/!
transmission

16(64)16(64)

Information Coding / Computer Graphics, ISY, LiTH

Light sources = emissive surfaces!
!

Like in radiosity (for which we can consider the renderer to
be a superset) there are no point light sources, at least not

on shader level. You can make surfaces emit light.!
!
!

The renderer is (generally) a form of path tracer, capable of
handling global illumination.

17(64)17(64)

Information Coding / Computer Graphics, ISY, LiTH

Default node setup!
!

When you start a new project, you get this structure for the cube.

18(64)18(64)

Information Coding / Computer Graphics, ISY, LiTH

Light calculations!
!

You generally do not need to think about lighting when
writing a texture shader. The light can be left for other parts.

All you need to do is to create the surface, possibly with
normal vectors, and leave the lighting to other parts.

Simple lighting using the Diffuse BSDF shader node (not OSL)

19(64)19(64)

Information Coding / Computer Graphics, ISY, LiTH

Script nodes!
!

A node can also be a "script node", which means a node that
defines its function by an OSL shader!

!
!
!
!
!
!
!
!
!
!

Let's see what we can do:Script node!

20(64)20(64)

Information Coding / Computer Graphics, ISY, LiTH

Open Shading Language!
!

Developed by Sony Pictures Imageworks!
!

Supported by several renderers including!
!

Cycles in Blender!
!

Arnold in 3DSMAX and Maya!
!

Has been used for CG effects in movies

21(64)21(64)

Information Coding / Computer Graphics, ISY, LiTH

Open Shading Language (OSL)!
!

No fixed pipeline!
!

Not tightly bound to hardware!
!

Often implemented in CPU = not fast!
!

Based on Renderman Shading Language!
!

Found in off-line rendering packages like Blender, 3DSMAX and Maya

22(64)22(64)

Information Coding / Computer Graphics, ISY, LiTH

Built-in functions!
!

Conveniently for our purposes, there are many built-in functions
in OSL including noise functions. We will be using these.!

!
Many functions are also hard-coded in specific node types. We

will use these too, but not only these.

A shader is written for a single task!
!

With the node system, it is easy to separate tasks into
separate shaders.

23(64)23(64)

Information Coding / Computer Graphics, ISY, LiTH

Example shader from the docs!
!

Takes a color and a gamma value in.!
!

Sends gamma adjusted colors out.

24(64)24(64)

Information Coding / Computer Graphics, ISY, LiTH

Input and output points in the node "box"
is defined by the input and output

variables in your code!!
!

Points for point-and-click connecting appear as the
code is saved/compiled.

25(64)25(64)

Information Coding / Computer Graphics, ISY, LiTH

Node groups!
!

Multiple nodes, OSL shader or not, are connected.!
!

You make connections to define the data paths.

26(64)26(64)

Information Coding / Computer Graphics, ISY, LiTH

Integrators!
!

The final stage of the rendering is the integrator, where the
different parts are merged to a final output. The integrator is

not your job, you only feed it your data.!
!

You feed your result to "Material output". Then you let the
renderer do the rest.

27(64)27(64)

Information Coding / Computer Graphics, ISY, LiTH

Language!
!

Much is business as usual.!
!

Alphanumerics for identifiers. Comments as in C and GLSL.!
!

Much more reserved words than in GLSL:!
!

and break closure color continue do else emit float for if illuminance
illuminate int matrix normal not or output point public return string struct
vector void while!
!
and some that are not yet used but still reserved:!
!
bool case catch char class const delete default double enum extern false
friend goto inline long new operator private protected short signed sizeof
static switch template this throw true try typedef uniform union unsigned
varying virtual volatile

28(64)28(64)

Information Coding / Computer Graphics, ISY, LiTH

Preprocessor!
!

A lot more than GLSL:!
!

#define #undef #if #ifdef #ifndef #elif #else #endif #include
#pragma once!!
!
and version numbers:!
!
OSL_VERSION_MAJOR OSL_VERSION_MINOR OSL_VERSION_PATCH
OSL_VERSION!
!
More like ordinary C than GLSL.

29(64)29(64)

Information Coding / Computer Graphics, ISY, LiTH

Overall syntax:!
!

optional-function-or-struct-declarations!
!
shader-type shader-name (optional-parameters)!
{!
 statements!
}

You may notice how we declare the shader type as part
of the code.!

!
Existing types:!

!
surface, displacement, light, volume, shader (means generic shader)!
!

Some operations are only available to specific types.!

30(64)30(64)

Information Coding / Computer Graphics, ISY, LiTH

Surface shaders!
!

Compute the surface behavior, most specifically its color,
thereby also other ways it reacts to light.!

!
It can also emit light.!

!
Can not alter the position of the surface.!

!
Similar to a fragment shader in GLSL.

31(64)31(64)

Information Coding / Computer Graphics, ISY, LiTH

Displacement shaders!
!

Displacement shaders alter the position and shading normal
(or, optionally, just the shading normal) to make a piece of

geometry appear deformed, wrinkled, or bumpy.!
!

They are the only kind of shader that is allowed to alter a
primitive’s position.!

!
Similar to vertex shaders, or geometry shaders in GLSL.

32(64)32(64)

Information Coding / Computer Graphics, ISY, LiTH

Volume shaders!
!

Volume shaders describe how a participating medium (air,
smoke, glass, etc.) reacts to light and affects the

appearance of objects on the other side of the medium.!
!

They are similar to surface shaders, except that they may
be called from positions that do not lie upon (and are not

necessarily associated with) any particular primitive.

33(64)33(64)

Information Coding / Computer Graphics, ISY, LiTH

Generic shaders, "shader"!
!

Generic shaders are generic routines that may placed as
individual layers in a node group.!

!
Generic shaders need not specify a shader type.!

!
They may not contain any functionality specific to some

other type (for example, they may not alter P, which can only
be done from within a displacement shader).

34(64)34(64)

Information Coding / Computer Graphics, ISY, LiTH

Shader parameters!
!

Like function arguments.!
!

Must have an initializer, giving a default value for the
parameter!

!
Syntax for a single parameter:!

!
type parametername = default-expression!

!
Multiple parameters may be defined, separated by commas.!

!
Parameters may include one-dimensional arrays as well as

structures.

35(64)35(64)

Information Coding / Computer Graphics, ISY, LiTH

Parameters get values in several ways!
!

• Connected to an earlier stage value!
!

• If name/type matches a primitive variable of the geometry
being shaded, the parameter value will be computed,

possibly interpolated, from this value. (varying!)!
!

• There may be an instance value, giving a parameter an
explicit per-instance value at the time that the renderer

referenced the shader!
!

• If none of these are present, the default value given as
initializer is used.

36(64)36(64)

Information Coding / Computer Graphics, ISY, LiTH

Metadata!
!

Shaders can define metadata, information not used for the
rendering but for passing information to the user or host program

about the shader.!
!

Example: A string telling the UI a name to use for the shader.!
!

This is one case where shaders have a use for text. (Another
comes up soon.)!

!
Not a major thing when learning OSL but something that you may

find in existing ones.

37(64)37(64)

Information Coding / Computer Graphics, ISY, LiTH

Data types!
!

int!
float!
!

point!
vector!
normal!

!
color!
!

matrix!
!

string!
!

void

Like vec3

Always 4x4

38(64)38(64)

Information Coding / Computer Graphics, ISY, LiTH

Creating colors!
!

Colors can be created in various formats. All will be stored as RGB.!
!

color (0, 0, 0) // black!
color ("rgb", .75, .5, .5) // pinkish!
color ("hsv", .2, .5, .63) // specify in HSV space!
color (0.5) // Same as color(0.5,0.5,0.5)!
!
!

3-component RGB, no RGBA!
!

Separate colors channels are accessed as an array, e.g. color[2]!
but also as color.r, color.g, color.b!

!
Colors can be added, scaled, compared...

39(64)39(64)

Information Coding / Computer Graphics, ISY, LiTH

Matrices!
!

Matrices are also arrays.!
!

matrix zero = 0; // matrix with all 0 components!
matrix ident = 1; // identity matrix!
!!
// Construct a matrix from 16 floats!
matrix m = matrix (m00, m01, m02, m03,!
 m10, m11, m12, m13,!
 m20, m21, m22, m23,!
 m30, m31, m32, m33);!

!
The matrix is accessed in a 2-dimensional way:!

!
matrix M;!

 float x = M[row][col];!
 M[row][col] = 1;

40(64)40(64)

Information Coding / Computer Graphics, ISY, LiTH

Strings!
!

Strings are, for the purpose of rendering, mainly used for file
names for textures.!

!
In GLSL, we handle that in the main program, but we don't write

our own main program here so we must be able to ask the system
to find the files for us.!

!
Inside OSL strings are also used for specifying variants of things

like color format and noise type.!

41(64)41(64)

Information Coding / Computer Graphics, ISY, LiTH

Global variables

42(64)42(64)

Information Coding / Computer Graphics, ISY, LiTH

Interesting global variables!
!

P: Position. Can be useful, especially combined with N.!
!

I: Incident ray direction. No...!
!

N, Ng: Normal vector. Valuable!!
!

u, v: Primitive local coordinates (triangle edges?). No.!
!

These should take you pretty far.!

43(64)43(64)

Information Coding / Computer Graphics, ISY, LiTH

Accessibility

I believe this table says a lot about what you can do from
each shader type! (Except generic shaders.)

44(64)44(64)

Information Coding / Computer Graphics, ISY, LiTH

Library functions!
!

Much of the standard stuff, sqrt, sin, cos, floor, fract, round, min,
max, also the less used clamp, mix...!

!
Geometric functions: Constructors for point etc, dot, cross, length

(that is norm), normalize!
!

distance, reflect, refract, rotate!
!

Matrices: transpose, constructors

45(64)45(64)

Information Coding / Computer Graphics, ISY, LiTH

Library functions for pattern generation!
!

Here we can see that OSL has a lot built-in:!
!

step, linearstep, smoothstep!
!

noise (for several types)!
!

pnoise (for several types), periodic noise!
!

If you skip the type parameter, there is noise, snoise, pnoise,
psnoise, cellnoise for specific noise types. These calls look

deprecated AFAIK.!
!

aastep is included

46(64)46(64)

Information Coding / Computer Graphics, ISY, LiTH

Noise functions!
!

Functions get argument for choosing noise algorithm:!
!

type noise (string noisetype, float u, ...)!
type noise (string noisetype, float u, float v, ...)!

type noise (string noisetype, point p, ...)!
type noise (string noisetype, point p, float t, ...)!

!
!

"perlin", "snoise"!
 "uperlin", "noise"!

"cell"!
"hash"!

"simplex", "usimplex"!
"gabor"!

Amazing richness
in built-in noise

functions!

47(64)47(64)

Information Coding / Computer Graphics, ISY, LiTH

shader basic_shader(!
 float in_float = 1.0,!
 output color out_color = color(0.0, 0.0, 0.0)!
)!
{!
 out_color = noise(P * in_float * 10.0);!
}!

Example shader with noise!
!

P is a good source for basic input. (Or is it?)

48(64)48(64)

Information Coding / Computer Graphics, ISY, LiTH

More for us!
!

aastep for anti-aliasing!
!

displace!
!

Displace surface along the normal!
!

bump!
!

Adjust the normal by some amount!

49(64)49(64)

Information Coding / Computer Graphics, ISY, LiTH

!
Textures!

!
You may also want textures. You can get the texture coordinated from a
special node, the "texture coordinate" node. From that you take the "UV"

vector.!
!

For using an existing texture from file, use a texture->image texture node and
input the image from the node.!

!

50(64)50(64)

Information Coding / Computer Graphics, ISY, LiTH

All in all!
!

A lot of stuff pre-defined!
!

Focus on the basic types, noise generation for surface textures,
and, for the later parts of the lab, modifying geometry!

51(64)51(64)

Information Coding / Computer Graphics, ISY, LiTH

Start here!
!

One generic OSL shader!
!

One input, one output.!
!

Simple node chain, feed to a BSDF node and output!
!

P, N, texture coordinate node!
!

noise()

52(64)52(64)

Information Coding / Computer Graphics, ISY, LiTH

GLSL vs OSL!
!

GLSL runs on GPU. OSL only on CPU so far.!
!

GLSL is made for real-time. OSL for offline rendering.!
!

GLSL is controlled from your program, can be integrated in
any application.!

!
OSL comes integrated in a modeller/renderer software.!

!
GLSL renders specific stages in a pre-defined pipeline. OSL

renders stages in a custom node-based structure.!
!

GLSL lighting must be in your fragment shader. In OSL you
can separate texturing and light etc.

53(64)53(64)

Information Coding / Computer Graphics, ISY, LiTH

Live demo!
!

Let's see if I can show how it works...

Note: I use Blender 3.4.1. Don't use much older versions. Blender had a major GUI overhaul a few versions ago (2.7).

54(64)54(64)

Information Coding / Computer Graphics, ISY, LiTH

A few Blender hints!
!

Every window has a selection in the upper left corner. You will mostly
use "3D viewport" and "Properties".!

!
Tabs on the top: You will mainly use Shading and Scripting tabs.!

!
To manipulate models:!

!
G move!
R rotate!
S scale!

X remove!
Z select rendering mode!

!
Move camera with two-finger drag + shift/ctrl!

!
Nothing stops you from "Modelling" and "Sculpting" but not for the lab

Scrollwheel in the lab!

55(64)55(64)

Information Coding / Computer Graphics, ISY, LiTH

Lab material!
!

A few models are provided, two versions of the bunny model
(one was not compatible with Blender - now corrected) and the

Utah Teapot, plus a simple example shader.!
!

You will do most work directly in Blender or 3DSMAX.

56(64)56(64)

Information Coding / Computer Graphics, ISY, LiTH

More about Blender nodes!
!

A huge number of node types are pre-defined:!
!

Input nodes:!
!

Geometry!
RGB!
UV!

Texture coordinates!
Values!

…!
20 different!!

!
Only 2 output nodes. Output is output.

57(64)57(64)

Information Coding / Computer Graphics, ISY, LiTH

"Shader" nodes!
!

A lot of shaders mostly about lighting:!
!

Diffuse!
Glass!
Glossy!

Refraction!
Specular!

…

58(64)58(64)

Information Coding / Computer Graphics, ISY, LiTH

And even more categories of nodes:!
!

Textures!
Color (operations)!

Vector!
Converters!

Group!
Layout!

!
and of course Scripts!

59(64)59(64)

Information Coding / Computer Graphics, ISY, LiTH

Brand new (version 3.6: Simulation nodes!!
!

A powerful new kind of nodes.!

60(64)60(64)

Information Coding / Computer Graphics, ISY, LiTH

Animated particle systems

Deformations with memory over time!
!

Previous results are saved and resused for the next step. Like FBOs or
Transform Feedback in OpenGL

61(64)61(64)

Information Coding / Computer Graphics, ISY, LiTH

Simulation nodes as part of the Blender system!
!

Builds on geometry nodes!
!

Think: Geometry modification with memory over time!
!

Enables complex animations and iterative operations!
!

Early version, somewhat limited (they say), but still shows much
potential.!

!
Question from me: What of this can we do, for static scenes, with

OSL? Put the time in code loops?

62(64)62(64)

Information Coding / Computer Graphics, ISY, LiTH

Blender nodes can do a lot...!
!

In the lab, OSL is mandatory.!
!

In the projects, nodes are usually considered less height than OSL.!
!

However, Simulation nodes are "bleeding edge" so their usage and
possibilities are interesting!

63(64)63(64)

Information Coding / Computer Graphics, ISY, LiTH

Thank you for your attention!!
!

See you at the lab on monday!

64(64)64(64)

